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Earlier approaches to the analysis of chemical dynamic systems using kinetic 
logic are refined to deal more effectively with systems having the two or 
more feedback circuits required for chaos. The essential kinetic features of 
such a system can be represented by a directed graph (called an influence 
diagram) in which the vertices represent the internal species and the directed 
edges represent kinetic relationships between the internal species. Influence 
diagrams characteristic of chaotic chemical systems have the following addi- 
tional features: (1) They are connected; (2) Each vertex has at least one edge 
directed towards it and one edge directed away from it; (3) There is at least 
one vertex, called a turbulent vertex, with at least two edges directed towards 
it. From such an influence diagram a state transition diagram representing 
the qualitative dynamics of the system can be obtained using the following 
4-step procedure: (1) A logical relationship is assigned at each turbulent 
vertex; (2) A local truth table is generated for each circuit in the influence 
diagram; (3) The local truth tables are combined to give a global truth table 
using the logical relationships at the turbulent vertices; (4) The global truth 
table is used to determine the corresponding state transition diagram using 
previously described methods. This refined procedure leads to a more restric- 
ted set of influence diagrams having the interlocking cycle flow topology 
required for chaos than the procedure described earlier. Systems with 3 
internal species are examined in detail using the refined procedure. All 
systems with 3 dynamic variables shown in the simulation studies of R6ssler 
to give chaotic dynamics correspond to influence diagrams which give inter- 
locking cycle (chaotic) flow topologies by the refined procedure. In addition, 
two models for the Belousov-Zhabotinskii reaction are examined using the 

* For part 13 of this series see R. B. King, Theoret. Chim. Acta (Berl.) 63, 103-132 (1983) 
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refined procedure. The results are potentially informative concerning possible 
mechanisms for the limitation of the accumulation of autocatalytically pro- 
duced HBrO2 (one of the internal species) during the course of this reaction. 

Key words: Dynamic systems - Chaotic chemical reactions - Kinetic logic - 
Turbulence - Belousov-Zhabotinskii reaction. 

1. Introduction 

During the past decade, chemical reactions exhibiting periodic oscillatory 
behavior have attracted increasing attention [1, 2, 3]. More recently, the possibil- 
ity that the oscillations in such reactions may become aperiodic (chaotic) has 
been raised. Hudson and coworkers [4-6] report conditions where the oscillations 
of the Belousov-Zhabotinskii reaction in a continuous-flow stirred reactor appear 
to become chaotic. Using an early work of Lorenz [7] as an initial guide, R6ssler 
[8-12] has found several different sets of three simultaneous differential equations 
which exhibit chaotic behavior in simulation studies. 

These experimental observations on oscillating and chaotic chemical reaction 
networks have stimulated continuing interest in the mathematics of such systems. 
In this connection the following two general approaches appear to be emerging 
for the analysis of complicated sets of potentially oscillating and/or chaotic 
differential equations: (1) Clarke [13, 14] has developed a graph theoretical 
approach for the determination of the stability of steady states; (2) Switching 
circuit theory [15, 16] has been used to analyze [17-22] the flow topology [23] 
around unstable steady states; this approach has been called kinetic logic [24]. 
This paper presents a refinement of earlier approaches [23, 25] to the kinetic 
logic of multiple feedback circuit kinetic systems of types which are potential 
candidates for chaotic behavior. 

2. General Background 

The most convenient terms for classifying species found in chemical reaction 
networks are internal and external species [14]. The concentrations of internal 
species (also called reference reactants) vary on the time scale of interest and 
therefore are dynamical variables. The concentrations of external species (also 
called maior reactants) remain sufficiently close to a constant on the time scale 
of interest to be omitted as dynamical variables. 

The concentrations of the internal species in a chemical system can be represented 
by the variables Xl, x2 . . . . .  x,. The position of the system can always be defined 
by a point in the positive orthant of n-dimensional concentration space R". A 
steady state of this system is defined by 

~1 = ~2 . . . . .  ~, = 0 (1) 

where the dots refer to the time derivatives dxl/dt, dx2/dt, . . . .  dx,/dt. Such a 
steady state is stable if all nearby solutions stay nearby for all future time [26]. 
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Stable steady states are clearly significant by indicating where a dynamic system 
will come to rest. The significance of unstable steady states in determining 
dynamic behavior depends upon their neighborhoods, i.e., their flow topologies. 
In a two-variable system (i.e. n = 2) in which a third dimension represents energy, 
a stable steady state represents a pit and an unstable steady state represents a 
peak or saddle point. 

In the treatment in this paper as in previous work [23, 25] the relationship 
between the internal species is represented by a directed graph [27] called an 
influence diagram. An influence diagram has one vertex for each internal species. 
An edge is directed from a vertex representing a given internal species to a 
vertex representing an internal species whose rate of concentration change is 
affected by the first internal species. Such a directed edge is given a positive or 
negative weight if the relationship is activation or inhibition, respectively. If a 
given internal species has no effect on another given internal species, then the 
corresponding directed edge vanishes. A class of influence diagrams consists of 
all such diagrams which become equivalent when vertex labels are dropped. All 
members of the same class of influence diagrams have flow topologies of the 
same type. A family of influence diagrams consists of all classes of influence 
diagrams which become identical when edge labels are dropped. All members 
of the same family of influence diagrams do not necessarily have flow topologies 
of the same type. 

The circuits in influence diagrams are important in the treatment of this paper. 
A circuit in an influence diagram consists of a path which starts with a given 
vertex and follows various edges in the directions of the arrows until the original 
vertex is reached again. The length of a circuit is the number of edges in the 
circuit that must be traversed from a given vertex until that same vertex is 
reached again. A circuit is negative if it has an odd number of negative edges 
and positive if it has an even number of negative edges or no negative edges. 
Following previous practice [23, 25], positive and negative circuits of length n 
are called Bn and Cn circuits, respectively. 

In a search for influence diagrams which can represent chaotic chemical systems, 
only influence diagrams of a special type called turbulent influence diagrams 
need to be considered. A turbulent influence diagram has the following three 
properties: 

(1) There is a path between every pair of vertices, i.e. the diagram is connected. 

(2) Each vertex has at least one edge directed towards it and one edge directed 
away from it. 

(3) There is at least one vertex, called a turbulent vertex, with at least two edges 
directed towards it. 

Influence diagrams having only the first two properties listed above have been 
called oscillatable [23] or strong [25] influence diagrams. They have been con- 
sidered in my earlier papers on the flow topology of oscillating reactions [23, 25]. 
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This paper discusses chemical dynamic systems having 3 internal species. The 
following 4 families of turbulent influence diagrams are possible for systems 
having 3 internal species: 

L P O, R 

The letters labelling the families are taken from an earlier paper [23] and the 
turbulent vertices are starred. The families L, P, and O are all treated explicitly 
in this paper. Similar methods are also applicable to family R, which is significantly 
more complicated since it has all possible circuits and all 3 vertices are turbulent. 

3. The Flow Topology of Chemical Systems Represented 
by Turbulent Influence Diagrams 

Consider the chemical system represented by an influence diagram as a syn- 
chronous switching network in which time is quantized so that the signs of the 
first tinle derivatives of the concentrations of the internal species at time t + 1 
are determined by their signs at time t [18, 19]. The switching state at any time 
of such a chemical system containing n internal species can be represented by 
an n -vector of l 's and O's corresponding to positive and negative time derivatives, 
respectively, of the concentrations of each of the n internal species. Such an 
n-vector is called a state vector. The number of different possible state vectors 
in an n-dimensional system is 2 ~ and these state vectors can be represented by 
the 2 n vertices of an n-dimensional cube. The possible transitions from states 
at synchronous time t to those at time t + 1 may then be represented by arrows 
directed along the edges of the n-cube. In such transitions the value of exactly 
one component of the state vector changes. Furthermore in this treatment the 
discrete time scale t is chosen so that it advances one unit each time a single 
component of the state vector changes. The resulting n-cube with directed edges 
is called a state transition diagram. The center of the n-cube representing a state 
transition diagram corresponds to a steady state at which all of the first time 
derivatives of the concentrations of the internal species are zero (Eq. 1) and 
therefore do not correspond to either Boolean variable 0 or 1. If this steady 
state is unstable, the transitions represented by the directed edges of the state 
transition diagram define the fundamental topology of the flow in the neighbor- 
hood of the unstable steady state. 

The calculations of state transition diagrams corresponding to a given turbulent 
influence diagram can be performed by the following four-step procedure: 

(1) A logical relationship (AND or OR) is assigned between the set of edges 
directed towards a given turbulent vertex. Since each of these two logical 
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relationships (AND, OR) at a turbulent vertex leads to a separate state transition 
diagram, the total number  of state transition diagrams for a given turbulent 
influence diagram with v turbulent vertices is 2 ~. This number can become still 
larger if more than two edges are directed towards some of the turbulent vertices 
and more complicated logical relationships are allowed between three or more 
edges directed towards a given turbulent vertex. 

(2) A local truth table is generated for each circuit in the influence diagram to 
indicate possible transitions between state vectors. In order to see how such a 
local truth table is generated, consider possible effects of one internal species X 
on a second internal species Y. If X activates Y as indicated by a positive arrow 
from X to Y in the circuit under consideration, then in the local truth table the 
values for Y in each possible state vector at time t + 1 will correspond to values 
for X at time t. Thus when X activates Y an increase in the concentration of 
X (represented by I in the state vector coordinate) leads eventually to an increase 
in the concentration of Y (also represented by 1 in the state vector coordinate) 
and vice versa. However,  if X inhibits Y as indicated by a negative arrow from 
X to Y in the circuit under consideration, then in the local truth table the values 
for Y at time t + 1 will be the opposite of the values for X at time t (i.e. a 0 
for x at time t leads to a 1 for Y at time t + l  and vice versa). Thus in the 
absence of other effects when X inhibits Y, an increase in the concentration of 
X (represented by 1 in the corresponding state vector coordinate) eventually 
leads to a decrease in the concentration of Y (represented by 0 in the correspond- 
ing state vector coordinate) and vice versa. 

(3) The local truth tables for each of the circuits in the turbulent influence 
diagram are combined to give a global truth table using the local relationships 
at the turbulent vertices as follows: 
(a) If any of the local truth tables show a value of 0 for a variable represented 
by an AND turbulent vertex, then the global truth table for that variable also 
shows a value of 0. 
(b) If any of the local truth tables show a value of 1 for a variable represented 
by an OR turbulent vertex, then the global truth table for that variable also 
shows a value of 1. 

(4) The global truth table is used to determine the corresponding state transition 
diagram using the following algorithm: 
(a) Select two state vectors corresponding to an edge of the n-cube representing 
the state transition diagram and the state of the system at time t. Such a pair of 
state vectors will be identical except for one component  called the switching 
component. 
(b) Advance the discrete time scale by one unit and compare the switching 
components in the corresponding state vectors at discrete time t + 1 as indicated 
by an appropriate row in the global truth table. If both switching components 
are 0 at time t + l ,  then the arrow on the corresponding edge of the state 
transition diagram will be directed towards the vertex corresponding to the state 
vector at time t where the switching component  is 0. If both switching compon6nts 
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are 1 at time t+  1, then the arrow on the corresponding edge of the state 
transition diagram will be directed towards the vertex corresponding to the state 
vector at time t where the switching component is 1. The third and remaining 
possibility where the switching component at time t + 1 is 0 for one state vector 
and 1 for the other state vector implies the assignment of both edge directions 
on the corresponding edge of the transition diagram. This third possibility only 
arises when considering a feedback circuit not containing the switching com- 
ponent. 
(c) Repeat this procedure for the other pairs of state vectors corresponding to 
the remaining edges of the n-cube until all edges have been considered. 

Steps 2 and 4 of the above procedure are based on work by Glass [17-22] and 
have been used by the author in his previous papers [23, 25]. Steps 1 and 3 of 
the above procedure are suggested by the work of Thomas [24] and involve only 
the turbulent vertices. They vanish when strong influence diagrams containing 
only one circuit (i.e. fundamental polygons [25]) are considered, since such 
influence diagrams have no turbulent vertices. Also the author has considered 
the properties of state transition diagrams derived from turbulent influence 
diagram when no logical structure is imposed at any of the turbulent vertices so 
that all edge directions on the state transition diagram implied by individual 
circuits are regarded as possible in the global sense [23, 25]. Such state transition 
diagrams (called free state transition diagrams [25]) lead to many more systems 
having the interlocking cycles required for chaotic behavior than the state 
transition diagrams with logical constraints at the turbulent vertices considered 
in this paper. Since the analysis of flow topology gives necessary rather than 
sufficient conditions for interesting dynamic behavior such as oscillations and 
chaos, a theory which predicts a smaller number of cases for a given type of 
interesting dynamic behavior is more useful provided, of course, the theory is 
correct. 

The remainder of this paper demonstrates the following features of the flow 
topologies obtained from turbulent influence diagrams when logical relationships 
are imposed on turbulent vertices as outlined above: 

(1) In most of the important cases the qualitative features of the flow topology 
indicated by the state transition diagram remain unchanged when an AND 
relationship at a turbulent vertex is changed to an OR relationship. This change 
in logical relationship may change only the location in the state transition diagram 
of dynamically significant features such as vertices representing attracting regions 
or interlocking cycles representing chaos. Thus the predictions of this theory are 
relatively insensitive to the correctness of the logical relationships assigned to 
the turbulent vertices so that a fairly arbitrary assignment of logical relationships 
appears satisfactory for most purposes. 

(2) The number of turbulent influence diagrams leading to state transition 
diagrams having interlocking cycles becomes much smaller when logical structure 
is imposed on the turbulent vertices (as compared with free state transition 
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diagrams as defined above). However,  all dynamic systems observed to exhibit  

chaos  in computer  modell ing studies correspond to one of the much smaller 
number  of turbulent  influence diagrams exhibiting the interlocking cycle chaotic 
flow topology using the more restrictive algori thm outl ined in this paper  as 
compared  with the earl ier  work [23, 25] using free state transit ion diagrams. 
The theory outl ined in this paper  thus represents  a useful ref inement of the 
earl ier  theories [23, 25]. 

The four-s tep procedure  outl ined above for obtaining a state transition diagram 
from a turbulent  influence diagram is i l lustrated in Table 1 for a C2 + C2 system, 

Table 1. Calculations of state transition diagrams for a C 2-}- C 2 turbulent influence diagram 

(A ) Influence diagram 
Turbulent vertex at Y 

Y 

x z 

(B) Truth tables 

Time t 

x y z  

Local truth table 

Left circuit 
Time t + 1 

x y z  

Right circuit 
Time t + 1 

x y z  

Global truth table 

AND at Y 
Time t + 1 

x y z  

OR at Y 
Time t + 1 

x y z  

0 0 0  10  
1 0 0  11 
0 1 0  O0 
0 0 1  10  
1 1 0  01  
1 0 1  11 
0 1 1  O0 
1 1 1  01  

- 0 1  
- 0 1  
- 0 0  
- 1 1  
- 0 0  
- 1 1  
- 1 0  
- 1 0  

101 
101 
0 0 0  
101 
0 0 0  
111 
0 0 0  
0 1 0  

1 0 1  
1 1 1  
0 0 0  
1 1 1  
0 1 0  
1 1 1  
0 1 0  
0 1 0  

(C) State transition diagrams 

101 111 

1 0 0 ~ 0 1 1  

000 010 
And at Y 

101 111 

I00~011 

O0 0 ~--'~--~ 010 
Or at Y 
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the simplest system exhibiting a state transition diagram having the interlocking 
cycles required for chaotic behavior. The four steps listed above are performed 
as follows in this ease: 

(1) The C2+C2 system depicted in Table 1 has one turbulent vertex, namely 
Y. Therefore 2 state transition diagrams can be obtained from this system 
depending upon whether the logical relationship at Y is AND or OR. These 2 
state transition diagrams are depicted at the bottom of Table 1. 

(2) Separate local truth tables are calculated for the left circuit consisting of X 
and Y and for the right circuit consisting of Y and Z. Thus the local truth table 
for the left circuit contains no entry for Z and the local truth table for the right 
circuit contains no entry for X since these vertices are absent from the circuit 
under consideration. 

(3) The global truth table differs only in the entries in the columns for Y since 
this is the only turbulent vertex. Thus in the four cases where one of the local 
truth tables has a 0 entry for Y and the other local truth table has a 1 entry for 
Y, the global truth table for an AND relationship at Y has a 0 entry and the 
global truth table for an OR relationship at Y has a 1 entry. 

(4) Both of the state transition diagrams have interlocking cycles of lengths 4 
and 6. In the state transition diagram for an AND relationship at Y the cycles 
of length 4 are located on the top and rear faces of the cube and a cycle of 
length 6 follows the path 000-100-101-111-011-010-000. Similarly in the state 
transition diagram for an OR relationship at Y, the cycles of length 4 are located 
on the front and bottom faces of the cube and a cycle of length 6 follows the 
same path (000-100-101-111-011-010-000) as the corresponding cycle on the 
state transition diagram for an AND relationship at Y. Thus changing the logical 
relationship at Y from AND to OR in the C2 + C2 influence diagram does not 
affect the position of the cycle of length 6 on the corresponding state transition 
diagram but only the positions of the cycles of length 4. 

Table 2 summarizes the results of such calculations of state transition diagrams 
having one or two turbulent vertices. Table 2 also illustrates the effects of logical 
structure at the turbulent vertices on the resulting flow topologies. 

The flow topologies of the 3-variable state transition diagrams arising from 
calculations with or without logical structure at the turbulent vertices are all of 
one of the following four types: 

(1) Two Attracting Regions. Two diagonally opposite vertices of the cube each 
have all three edges directed towards the vertex in question thereby representing 
the signs of the time derivatives in the attracting regions. 

(2) One Attracting Region. A single vertex of the cube has all three edges directed 
towards itself thereby representing the signs of the time derivatives in an attract- 
ing region. This flow topology only arises when logical structure is imposed at 
turbulent vertices since it is symmetry forbidden [25] in free state transition 
diagrams. 
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Table 2. The effect of logical structure at turbulent vertices on the flow topologies of 3-variable 
state transition diagrams 

Influence diagram 
Circuit structure 

Flow topology of state transition diagram 

Free Logical structure 

B 2 + B 2 2 attracting regions 2 attracting regions 
B 2 + C 2 interlocking cycles I attracting region 
C2 + C2 interlocking cycles interlocking cycles 
B 2 + B 3 2 attracting regions 2 attracting regions 
B 2 + C a cyclic attractor 1 attracting region 
C2 + Ba interlocking cycles 1 attracting region 
C2 + C3 interlocking cycles interlocking cycles 
B2 + B 2  q- B3 2 attracting regions 2 attracting regions 
B2 + B2 + C3 cyclic attractor 1 attracting region 
B 2 q- C 2 -}- B 3 interlocking cycles 1 attracting region 
B2 + 6"2 + C3 interlocking cycles 1 attracting region or 

interlocking cycles (see text) 
C 2 -}- C 2 q- B 3 interlocking cycles 1 attracting region or 

interlocking cycles (see text) 
C 2 q- C 2 q- C 3 interlocking cycles interlocking cycles 

(3) Cyclic Attractor. A single cycle of length 6 is formed. The two vertices not 
in this cycle each have all three edges directed away from them towards the 
vertices forming the cycle. This flow topology represents periodic oscillations 
and does not arise f rom turbulent influence diagrams when logical structure is 
imposed at the turbulent vertices. 

(4) Interlocking Cycles. Cycles of lengths 4 and 6 are found which have edges 
in common.  There  are no vertices which have all three edges directed towards 
the vertex in question, i.e., attracting regions are absent. This flow topology 
represents chaos since the interlocking cycles can prevent  the oscillations from 
having a definite period. 

The following conclusions can be derived f rom the information in Table 2: 

(1) For influence diagrams having exactly one turbulent vertex (i.e. those in 
Table 2 with 2 circuits) the flow topology type is independent  of the logical 
structure (AND, OR) at the turbulent vertex. 

(2) For influence diagrams having 2 turbulent vertices (i.e. those in Table 2 
having 3 circuits) the flow topology type may depend only upon whether  the 2 
turbulent vertices have the same or different logical structures. Fur thermore,  
this factor is only critical for the B 2 + C 2 + C 3  and C2+C2+B3 systems where 
in Table 2 the first flow topology type listed (1 attracting region) arises when 
the two turbulent vertices have the same logical structure (AND + A N D  or 
O R  + OR) and the second flow topology listed (interlocking cycles) arises when 
the two turbulent vertices have different logical structures (AND + OR). 
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(3) Free state transition diagrams derived from an influence diagram with n 
vertices have interlocking cycles any time a C,-1 circuit is present [25]. Thus all 
influence diagrams in Table 2 having C2 circuits exhibit the interlocking cycle 
flow topology for their free state transition diagrams. In particular the flow 
topology of such systems is insensitive to added B2 and B3 circuits if a C2 circuit 
is present. Such is no longer true when logical structure is imposed on the 
turbulent vertices where a C2 + C2 or C2 + C3 circuit pair is required to produce 
interlocking cycle flow topology. Thus turbulent influence diagrams having 3 
vertices and only one C2 circuit which exhibit interlocking cycle flow topology 
when their free state transition diagrams are considered instead exhibit flow 
topology with one attracting region when logical structure is imposed on the 
turbulent vertices. 

A major conclusion from the analysis in this paper is that imposition of logical 
structure on the turbulent vertices of influence diagrams reduces significantly 
the range of systems exhibiting the interlocking circuit flow topology necessary 
for a chaotic system. This added feature therefore sharpens the predictive value 
of flow topology for identifying dynamic systems with the potential for chaotic 
behavior. The next section of this paper compares the predictions of this theory 
with actual dynamic systems for which chaotic behavior has been demonstrated. 

4. Comparison with Simulation Studies 

R6ssler has found a variety of systems of 3 differential equations which exhibit 
chaos in simulation studies. These systems are listed in Table 3 along with a 
summary of their influence diagram types and non-linearities. 

Comparison of Table 3 with Table 2 reveals that all of the 3-variable systems 
shown to exhibit chaos in simulation studies correspond to turbulent influence 
diagrams giving state transition diagrams having the interlocking cycles required 
for chaos even when logical structure is imposed on the turbulent vertices. Most 
of the systems in Table 3 correspond to C2 + C2 influence diagrams but there 
are also examples of systems having B2 + C2 + C3, C2 + C2 + C3, and C2 + C3 
influence diagrams with feasible parameter values in some feasible region of 
concentration space. Thus all of the 3-variable turbulent influence diagrams with 
logical structure shown to have interlocking cycle (chaotic) flow topologies in 
Table 2 are represented in Table 3 except for the C2 + C2 +B3 system. Further- 
more, none of the examples of actual chaotic dynamic systems in Table 3 
correspond to influence diagrams which give state transition diagrams having 
flow topologies other than the interlocking cycle flow topology when logical 
structure is imposed at the turbulent vertices. Thus the B2+C2, C2+B3, and 
B2 + C2 + B3 influence diagrams do not appear in Table 3; these are the 3-variable 
influence diagrams which give free state transition diagrams having interlocking 
cycles but state transition diagrams having 1 attracting region when logical 
structure is imposed. This suggests that the imposition of logical structure at the 
turbulent vertices improves the value of this theory for predicting dynamic 
systems leading to chaos. 
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Table 3. Three-variable dynamic systems shown to exhibit chaos in simulation studies 

Influence Nonlinear 
System diagram type equations" Reference 

= 10(y - x) B2 + C2 + C3 2Q Lorenz b 
= x ( 2 8 - z ) - y  or 

Z" = x y  -- 8Z C 2 + C 2 q- C 3 

= - ( y  + z )  C2 + C2 1Q R6ssler c 
)~ =x  +0.2y 

= 0.2+z(x -5.7)  

Yc = a + bx  - (cy + d z ) x / ( x  + K) C 2 q- C 2 1 Q + 1C R6ssler a 
= ex  - f b  

2 = y x  + h z  - j z 2 - m z / ( z  + K ' )  

= x - xy - z C2 + Cz 2Q R6ssler ~ 
= x Z - a y  

; k = b x - c z  + d  

Yc = - y  - z C2  + C2 1Q R6ssler ~ 
)~ =x  +ay 

= b + x z - c z  

ic = - y  + a x  - b z  C z  + C2  1C R6ssler f 
)~ = x + l . 1  or 
s = c(1 -- Z2)(X q-Z)  - -Z  B2-[- C 2 

= - y  - z C2 + C2 1Q R6ssler ~ 
= x + a y  
= bx  - c z  + x z  

= x - xy - z C2 + C2 2Q R6ssler f 
3~ = x 2 - a y  

= b ( c x  - z )  

= - x y  - a x  - z B 2  + C z  + C3 2Q R6ssler ~ 
= - x  + by  + c z  

~ = d  + e x z  + f x  

= - y  - z C2 + C3 1Q R6ssler f 
~ X  o r  

~( =a(y  --y2)-- bz C2+B 3 

a This refers to the number of the three equations that have quadratic (Q) or cubic (C) terms as the 
highest degree terms rather than linear terms 
b Lorenz, E. N.: J. Atmos. Sci. 20, 130 (1963) 
c R6ssler, O. E.: Phys. Letters 57A, 397 (1976) 

Rdssler, O. E.: Z. Naturforsch. 31a, 259 (1976) 
e R6ssler, O. E.: Z. Naturforsch. 31a, 1664 (1976) 
f Rdssler, O. E.: Ann. N. Y. Acad. Sci. 316, 376 (1979) 

T h e  f o l l o w i n g  f e a t u r e s  o f  T a b l e  3 a r e  a l so  of  i n t e r e s t :  

(1) S o m e  of  t h e  d y n a m i c  s y s t e m s  in T a b l e  3 c o r r e s p o n d  to  d i f f e r e n t  i n f l u e n c e  

d i a g r a m s  in d i f f e r e n t  r e g i o n s  of  c o n c e n t r a t i o n  s p a c e ,  i .e. ,  t h e y  a re  c o m p o s i t e  

r a t h e r  t h a n  s i m p l e  c h e m i c a l  s y s t e m s  [23]. T h u s  t h e  first  s y s t e m  in T a b l e  3 is a 
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B2 + C2 + C3 system when z < 28 and a C2 + C2 + C3 system when z > 28. Similarly 
the sixth system is a C2 + C2 system when z < 1 and a B2 + C2 system when z > 1. 

(2) All of the systems in Table 3 have at least one non-linear differential equation. 
In most cases this non-linear equation is quadratic (including xy, yz, or xz terms 
which become quadratic when solving for x, y, and z values at the steady states 

= )~ = 2 = 0). This non-linearity is needed to provide at least 2 steady states 
so that there will be at least one unstable steady state in the positive octant of 
concentration space. The analysis of flow topology in this and previous [23, 25] 
papers is meaningful only when there is an unstable steady state in the positive 
octant of concentration space around which the predicted flows can occur. The 
simplest type of dynamic system which can exhibit chaos is the simple C2 + C2 
3-variable system having one quadratic and 2 linear equations as exemplified 
by the second, fifth, seventh, and eighth systems in Table 3. 

5. Treatment of Models for the Oscillating Belousov-Zhabotinskii Reaction 

The most thoroughly studied oscillating reaction is the Belousov-Zhabotinskii 
reaction which has the principal overall stoichiometry [28]: 

2BrO3+3CH2(COzH)2+2H § ~ 2BrCH(CO2H)2+3CO2+4H20. (2) 

The course of this reaction involves 3 major processes [29]: 

(1) Reduction of BrO~ to Br2 by oxygen atom transfers through HBrO2 and 
HOBr followed by bromination of the malonic acid. 

(2) Reduction of BrO3 to Br2 by an autocatalytic process involving one electron 
transfers and free radical oxybromine intermediates using Ce +3 as an electron 
source. Again the resulting Br2 brominates the malonic acid. 

(3) Oxidation of bromomalonic acid and other organic bromine compounds with 
Ce +4 to regenerate Ce +3 and Br-. 

The internal species determining the phase of the system can be taken to be 
HBrO2, Br-, and Ce+4; thus this system can be analyzed as a 3-variable system. 
Oscillations in this system are normally observed experimentally [30] by monitor- 
ing the concentrations of Br- and/or Ce +4 as a function of time by using 
appropriate electrodes. The species BrO3, malonic acid, total cerium, and organic 
oxidation products may be regarded as external species whose concentrations 
remain constant or nearly constant for a long time relative to the time of the 
oscillations. 

In order to illustrate the application of the methods in this and previous [23, 
25] papers to actual chemical dynamic systems, two models of the Belousov- 
Zhabotinskii reaction are examined. These models are summarized in Table 4. 
Both of these models contain 3 internal species HBrO2, Br-, and Ce +4, which 
are designed as x, y, and z, respectively. 

In order to obtain useful influence diagrams, only relationships between different 
internal species need to be considered. Self-activation and self-inhibition 
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Table 4. Two models for oscillations in the Belousov-Zhabotinskii reaction 
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Influence 
Influence diagram 

Model a diagram b type 
Nonlinear 
equations ~ Reference 

Yc = ay - x y  +x  - x 2  a. A .Y~ C2+B3(x  < a )  
= - a y  - xy + bz "~1~" ~ § B2 + C3(x >a)  

= x - z  X ~ Z 
4- 

2Q 

2 = ( 1 - a ) x  + y - x y - x z  
= - ( 1 - a ) y  +z -xy  +b 
= -(1 + ac)ez + ex - exz 

Y~ 
C 2+C 2+B3(x  < 1, z < 1) 
C2+B2+ C3(x < 1, z > 1) 
B 2 + C 2 + C 3 ( x  > 1, z < 1) 
B 2 + B 2 + B 3 ( x  > 1, z > 1) 

3Q e 

a In both models x, y, and z correspond to the concentrations of HBrO2, Br-, and Ce +~, respectively. 
These are the internal species (reference reactants) in the Belousov-Zhabotinskii reaction. The 
malonic acid, bromate, and total cerium reactants and the various oxidation and bromination products 
of malonic acid are external variables which are incorporated in the above constants by procedures 
given in the cited references 
b The turbulent vertices are starred 
c Q refers to the number of quadratic equations in the dynamic system; the remaining equation in 
the first system (that for 2) is linear 
d Tyson, J. J.: Ann. N. Y. Acad. Sci. 316, 279 (1979) 
e Tomita, K., Tsuda, I.: Phys. Letters 71A, 489 (1979) 

re la t ionsh ips  a re  signif icant  and  i m p o r t a n t  in the  analysis  of s tabi l i ty  [13, 14] 
bu t  not  in the  analysis  of flow topo logy .  

The  inf luence d i ag rams  for  the  m o d e l s  in Tab le  4 conta in  d i r ec t ed  edges  r ep -  
r e sen t ing  some  of the  fo l lowing  five chemica l  r eac t ions  in the  overa l l  m e c h a n i s m  
for the  B e l o u s o v - Z h a b o t i n s k i i  r eac t ion :  

+ 

(1) y---~x (the y t e rm  in the  2 equa t ion) :  the  

r eac t ion  of B r O 3  (an ex te rna l  species)  wi th  B r - ( y ) .  

f o r m a t i o n  of HBrO2(x )  by  

(2) y - - ~ x  and  x - - ' , y  ( - x y  t e r m s  in the  2 and  3~ equa t ions) :  the  r eac t ion  of 

HBrO2(x )  wi th  B r - ( y )  to  give H O B r .  

(3) z ~ x and  x ~ z ( - x z  t e rms  in the  ~ and 2 equa t ions) :  the  accumula t ion  
of au toca ta ly t i ca l ly  p r o d u c e d  H B r O 2 ( x )  is l imi ted  by  its ox ida t ion  with  ce+a (z ) .  
This  f ea tu re  only  occurs  in the  T o m i t a  and  T s u d a  m o d e l  [31]. T h e  - x  2 t e rm  in 
the  2 equa t ion  of the  Tyson  m o d e l  [29] p lays  an ana logous  ro le  and r ep re sen t s  
the  l imi ta t ion  of the  accumula t ion  of au toca ta ly t i ca l ly  p r o d u c e d  HBrO2(x )  
t h rough  its b imo lecu l a r  d i s p r o p o r t i o n a t i o n  into  B r O 3  and  H O B r .  
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+ 

(4) z ~ y (z term in the ~ equation): the generation of Br-(y) by oxidation of 
organic bromine compounds (external variables) with Ce+4(z). 

§ 

(5) x---~z (x term in the ~ equation): the regeneration of Ce+4(z) from Ce +3 
by oxidation with BrO3 (an external species) catalyzed by HBrO2(x). 

Reactions 2 and 3 involve a bimolecular reaction between two internal species 
and therefore correspond to two negative edges in the influence diagram forming 
a B2 circuit with the two internal species at the vertices. Also the simultaneous 
occurrence of reactions 1 and 2 leads to conflicting signs on the y ~ x directed 
edge and the simultaneous occurrence of reactions 3 and 5 leads to conflicting 
signs on the x ~ z directed edge. These systems may thus be regarded as 
composite chemical systems with different influence diagrams in different regions 
of concentration space. 

The Tyson model [29] in Table 4 includes reactions 1, 2, 4, and 5 listed above 
and leads to an influence diagram having one turbulent vertex (Y) and 4 distinct 
directed edges, one of which can be either positive or negative. The Tomita and 
Tsuda model [31] in Table 4 includes all 5 reactions listed above and leads to 
a somewhat more complicated influence diagram having 2 turbulent vertices (X 
and Y) and 5 distinct directed edges, two of which can be either positive or 
negative. These 2 models differ essentially only in the way that the autocatalytic 
buildup of the HBrOz concentration (x) is limited as noted above. However, 
this single difference is sufficient to change radically the flow topology of the 
system. 

The Tyson model [29] has one ambiguous edge corresponding to a composite 
chemical system with 2 influence diagrams which are C2 + B3 and Bz + C3. If the 
turbulent vertex Y has logical structure, the flow topology of each of these two 
influence diagrams has a single attracting region. However, if the effect of the 
Bz circuit in the B2 + C3 influence diagram is suppressed by a low weight of the 
x ~ y directed edge through appropriate rate constant adjustment, the resulting 
C3 system can have the flow topology appropriate for periodic oscillation. More 
significantly, however, appropriate interlocking cycle flow topology for a chaotic 
system cannot be generated from the Tyson model, which is based on the 
"Oregonator" suggested by Field and Noyes [32]. This may relate to the inability 
to find any range of chaotic behavior from simulation studies on related systems 
[33]. 

The Tomida and Tsuda model corresponds to a composite chemical system with 
4 influence diagrams since it has two ambiguous edges. The flow topologies for 
these 4 influence diagrams cover all possibilities for the relevant family (Q in 
[23]) which, in particular, include the interlocking cycles required for chaos. In 
this connection Tomita and Tsuda [31] have found chaos in their model through 
computer simulation studies. 

Experimental studies on the Belousov-Zhabotinskii reaction in a continuous-flow 
stirred reactor [6-8] suggest a well-defined flow rate range in which the oscilla- 
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t ions are  chaot ic  r a t h e r  than  per iodic .  T h e  above  analysis  suggests  tha t  the  s econd  

m o d e l  in T a b l e  4 (the m o d e l  of T o m i t a  and  T s u d a  [31]) m o r e  c losely  a p p r o x i m a t e s  
such a chao t ic  sys tem.  A chemica l  impl ica t ion  of this obse rva t i on  is tha t  r eac t ion  
with  the  o n e - e l e c t r o n  ox idan t  (Ce +4) is s ignif icant  in l imi t ing  the  accumula t i on  
of au toca ta ly t i ca l ly  g e n e r a t e d  HBrO2.  This  is cons i s ten t  wi th  ava i lab le  i n fo rma-  
t ion [30] on the  po ten t i a l s  in o x y b r o m i n e  sys tems which suggest  tha t  the  fo l lowing  

reac t ion :  

C e + 4 + B r O ~  ~__ C e + 3 + B r O 2  �9 (3) 

m a y  p r o c e e d  in e i ther  d i rec t ion  d e p e n d i n g  upon  the cond i t ions  (e.g., acidi ty ,  
abi l i ty  of coun te r ions  to complex  with  cer ium,  etc.).  F u r t h e r m o r e ,  these  obse rva -  
t ions  suggest  a g rea t e r  sensi t iv i ty  of even  the  qua l i t a t ive  dynamics  of the  
B e l o u s o v - Z h a b o t i n s k i i  r eac t ion  on the o n e - e l e c t r o n  ox idan t  used  (e.g., Ce +4 
versus  (o -phen)3Fe  3§ than  is o f ten  assumed.  

References 

1. Nicolis, G., Portnow, J.: Chem. Revs. 73, 365 (1973) 
2. Noyes, R. M., Field, R. J.: Ann. Rev. Phys. Chem. 25, 95 (1974) 
3. Noyes, R. M.: Ber. Bunsenges. Phys. Chem. 84, 295 (1980) 
4. Schmitz, R. A., Graziani, K. R., Hudson, J. L.: J. Chem. Phys. 67, 3040 (1977) 
5. Hudson, J. L., Hart, M., Marinko, D.: J. Chem. Phys. 71, 1601 (1979) 
6. Hudson, J. L., Mankin, J. C.: J. Chem. Phys. 74, 6171 (1981) 
7. Lorenz, E. N.: J. Atmos. Sci. 20, 130 (1963) 
8. R6ssler, O. E.: Z. Naturforsch. 31a, 397 (1976) 
9. R6ssler, O. E.: Z. Naturforsch. 31a, 1664 (1976) 

10. R6ssler, O. E.: Phys. Letters 57A, 397 (1976) 
11. R6ssler, O. E.: Lect. Appl. Math. 17, 141 (1979) 
12. R6ssler, O. E.: Ann. N. Y. Acad. Sci. 316, 376 (1979) 
13. Clarke, B. L.: J. Chem. Phys. 60, 1481 (1974) 
14. Clarke, B. L.: Advan. Chem. Phys. 43, 1 (1980) 
15. Caldwell, S. H.: Switching circuits and logical design. New York: Wiley 1958, 1967 
16. Hu, S.-T.: Mathematical theory of switching circuits and automata. Berkeley and Los Angeles: 

California Press 1968 
17. Glass, L., Kauffman, S. A.: J. Theor. Biol. 39, 103 (1973) 
18. Glass, L.: J. Theor. Biol. 54, 85 (1975) 
19. Glass, L.: J. Chem. Phys. 63, 1325 (1975) 
20. Glass, L.: in: Statistical mechanics, Pt. B. Berne, B. J. Ed. New York: Plenum Press 1977 
21. Glass, L.: in: Statistical mechanics and statistical methods in theory and application, Landman, 

U. Ed. New York: Plenum Press 1977 
22. Glass, L., Pasternack, J. S.: J. Math. Biol. 6,207 (1978) 
23. King, R. B.: Theoret. Chim. Acta (Berl.) 56, 269 (1980) 
24. Thomas, R.: Kinetic logic. Berlin: Springer 1979 
25. King, R. B.: J. Theor. Biol. 98, 347 (1982) 
26. Hirsch, M. W., Smale, S.: Diferential equations, dynamical systems, and linear algebra. New 

York: Academic Press 1974 
27. Robert, F. S.: Discrete mathematical models. Englewood Cliffs, New Jersey: Prentice-Hall 1973 
28. Bornmann, L., Busse, H., Hess, B.: Z. Natufforsch. 28c, 514 (1973) 
29. Tyson, J. J.: Ann. N. Y. Acad. Sci. 316, 279 (1979) 



338 R.B. King 

30. Field, R. J., K6r6s, E., Noyes, R. M.: J. Am. Chem. Soc. 94, 8649 (1972) 
31. Tomita, K., Tsuda, I.: Phys. Letters 71A, 489 (1979) 
32. Field, R. J., Noyes, R. M.: J. Chem. Phys. 60, 1877 (1974) 
33. Ganapathisubramanian, N., Noyes, R. M.: J. Chem. Phys. 76, 1770 (1982) 

Received January 19, 1983 


